
I",. J SvliJs 5'"",,,,,,, VoL ZS. :-;". ~. Pl'. IlJ~IISol. 19'11
Pnnt.ed in Great Bntatn.

OOZl)-768391 53.00+.00
C 1991 Pergamon Press pic

PLASTIC BUCKLING OF METAL MATRIX
LAMINATED PLATES

M. PALEY and J. ABOUDl
Department of Solid Mechanics. Materials and Structures. Faculty of Engineering.

Tel-Aviv University. Ramat-Aviv. Tel-Aviv 69978. Israel

(Receked 17 August 1990; in ret'isedform 2 December 1990)

Abstraet-A method is proposed for the determination of plastic bifurcation buckling load of
metal matri~ composite plates. Thc metallic matrix behavior is described by an elastic-viscoplastic
constitutive law. while the fibers are assumed to be either elastic or elastic-viscoplastic material.
The approach is based on the load level and history dependent instantaneous effective properties
of the inelastic plate. which are establishcd by a micromechanical analysis. An incremental procedure
is developed in which a buckling condition has to be established and its fulfilment must be checked at
each increment. The method is applied for the prediction of the plastic buckling of boron/aluminum
composite plates in various sillialions. by employing the classical and higher order shear deformation
platc thcllrics.

I. INTRODUCTION

The determination of the buckling load of perfectly elastic composite plates has received
considerable allention [sec Leissa (19X5. 19~7) for extensive reviews]. Most of the papers
covered in these reviews utilize the dassical theory of plates. The usc of a tirst order theory
in the study of bifurcation buckling of elastic plates can be found in Whitney and Leissa
(1969) und Whitney (1987). Analyses of composite plate buckling by employing higher
order theories can be found in the recent review by Kapania and Raciti (1989).

The stability analysis of homogeneous inelastic plates is much more complicated than
the perfectly elastic case. due to the inherent nonlinearity of the material constitutive law.
The study of bifurcation buckling can be performed by employing total deformution
plasticity (e.g.• Bijlaard, 1949) or incremental theory (e.g.. Hendelman und Prager. 1948).
For extensive reviews of this subject. sec Hutchinson (1974) and Bushnell (1982). Recently.
the inl1uence of material rute sensitivity on the clastic-plastic buckling of structures has
been investigated by Tvergaard (1985), Bodner et al. (1991). and Paley and Aboudi (1991 b).

The theory of uniqueness and bifurcation in time-independent elastic-plastic materials
was given by Hill (1958). It was shown by Tvergaard (1989) that Hill's bifurcation condition
can be satisfied for elastic-viscoplastic materials only at the elastic buckling load. This is
due to the high strain-rates that occur at the instant of buckling. In practice, imperfections
and inertial effects reduce the instantaneous changes of buckling strain rates (Bodner et 01.,
1991). The use of strain-rates in the pre-buckled state in an appropriate buckling condition
of a viscoplastic material provides lower bounds to the actual buckling loads.

The prediction of plastic buckling of metal matrix composite structures is difficult due
to the complicated interactions between the inelastic matrix and reinforcement. In previous
investigations. the inelastic effects of the matrix were neglected by assuming perfectly elastic
behavior for all loading levels. Obviously. this is a restriction since a metal matrix composite
deforms plastically at the early stages of loading. For example. in a boron/aluminum
composite the aluminum matrix yields at a strain of about 0.002. which is far away from
the ultimate strain of the composite. Thus. an efficient utilization of the metal matrix
composite up to failure must take into account the plastic flow of the matrix. The plastic
buckling analysis of a metal matrix comp-osite structure requires the knowledge of its
instantaneous stiffnesses which depend on the history and loading level. The overall instan­
taneous properties of the inelastic composite can be determined by a suitable micro­
mechanical analysis from the known material parameters of fiber and matrix. In the
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framework of the classical incremental plasticity theory. bounds on the overall instan­
taneous e1astoplastic moduli of periodic composites were determined by Accorci and Nemat­
Nasser (1986) and Teply and Dvorak (1988).

Explicit expressions of the effective instantaneous properties of metal matrix com­
posites were recently given by Paley and Aboudi (199Ia). The derivation of the instan­
taneous properties was based on the micromechanical method of cells (Aboudi, 1989) in
which the metal matrix is assumed to behave as an elastic-viscoplastic material reinforced
by elastic or e1astic-viscoplastic fibers. It was shown by Paley and Aboudi (199Ia) that al
any stage of loading, the current stiffnesses of the inelastic fiber and matrix material can be
employed to generate, in conjunction with the micromechanical analysis. the overall stiffness
tensor of the unidirectional composite. The instantaneous stiffnesses of metal matrix com­
posite laminates were obtained by using the standard lamination theory.

In the present paper, the previous micromechanical method for the derivation of
instantaneous properties of metal matrix composites is utilized for the bifurcation buckling
analysis of composite plates. where the matrix material could be elastic-viscoplastic. In
particular, the Bodner and Partom (1975) model is employed in the applications given in
this paper. The method is based on the development of governing buckling equations of
the composite inelastic plate, which are expressed in terms of the velocity field, and involve
the instantaneous properties of the laminated plate. Consequently. the derived buckling
condition, which is obtained from the governing equations. depends on the loading kvcl
and its history. Due to the existing plastic behavior of an inelastic phase, the method of
obtaining the critical buckling load level is incremental. At each load increment the fulfil­
ment of the derived buckling condition is examined. If the condition is satisfied, then the
buckling load level of the composite plate has been achieved; otherwise the incremental
procedure is continued.

The method is illustrated for various types of boron/aluminum composite plates. Both
the classical and higher order shear deformation plate theories arc employed. The drccts
of tiber volume ratio. plate thickness, material rate sensitivity, temperature, ply orientation
and total number of layers on the plastic buckling load of the plate arc studied. Comparisons
with the corresponding buckling loads obtained by disregarding the plasticity effeds of the
metal matrix arc presented.

2. MATERIAL STIFFNESS REDUCTION DUE TO PLASTIC FLOW

2.1. !Iomogeflt:olls viscoplastic materials
Consider a homogeneous isotropic e1astic-viscoplastie material subjected to a slowly

increasing external loading. At the first stage of loading, the material behavior is essentially
clastic and is characterized by its clastic stitrnesses. At a later stage, plastic deformation
develops, kading to anisotropic behavior of the material, which is described by its instan­
taneous reduced stiffness properties. This stiffness reduction, which is caused by the plastic
flow of the material, can be determined at any instant of the loading by the following

considerations.
The total strain-rate tensor of the material is assumed to be a sum of two components:

reversible (clastic) tJi~ and irreversible (plastic) '1~' i.e.,

( I )

The stress-rate tensor Ii} is related to the elastic part of the total strain-rate by the
generalized Hooke's law (small deformations arc assumed) :

(2)

where C, kl is the fourth order elastic stiffness tensor of the material. and the summation
conventi~n is employed on repeated italic letters. The plastic components of the strain-rate
are controlled by the Prandtl-Reuss flow law as follows:
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71fJ = As'}

ll~l

(3)

where Sl/ = (1,,- J,,(1u/3 is the deviatoric part of the stress tensor (iii' 15" is the Kronecker
delta. and A is the flow rule function of the adopted viscoplastic constitutive model which
describes the inelastic behavior of the material.

The following constitutive relation for the initially isotropic homogeneous viscoplastic
material can be established (Paley and Aboudi. 199Ib):

(4)

where the instantaneous strain-rate dependent viscoplastic moduli C;;:I of the material are
defined by

(5)

In (5). the scalar 9 is defined by the following equation:

(6)

where It is the elastic rigidity of the material. Equations (4)-(6) were established after
various manipulations by employing the flow rule (3) in conjunction with eqns (I) and (2).
It should be noled that these relations were established without the usc of the yield function
concept. In this paper. the superscript ( )1"/' is used to denote the various current properties
which characterize the viscoplastic material (and structure) that vary with lo'lding history.
Ill:an he readily seen that the redul:tion of material stilrness. caused by plastic !low. is a
function of the history and the current state of loading.

The instantaneous constitutive relation (4) was previously employed by the authors to
investigate the bifurcation buckling of viscoplastic plates (paley and Ahoudi. 1991 h). This
was performed by utilizing. at any stage ofloading. the current value of (';,f, of the material
at the buckling condition of the plate. which was derived from the governing equations in
conjunction with the specified boundary conditions.

It can be observed that the rate-dependent Ct:1 are similar to the form of the rate­
independent instantaneous moduli used by Hill in the derivation of his bifurcation condition
[sec. for example. eqn (3.4) of Tvergaard (1989)]. One can readily see from eqn (6) that
9 = 0 when the material behavior is elastic. whereas 9 is positive when plastic flow takes
place. The latter follows from the fact that 9 is given in terms of the ratio of the plastic
work rate (s",/;,) to the rate of the total work ofdeformation (.\'py'/py) which does not include
volume ch'll1ges.

In the present case of a viscoplastic material the strain-rate at the pre-buckled state is
used in computing C :;:1' At the instant of buckling. however. high strain-rates develop in
the m'lterial. Consequently, the predicted values of critical loads arc lower bounds of
the actual values. Thus the obtained bifurcation results are approximate. representing
predictions for an analogous time-independent material. Similar arguments were given by
Bodner £'t al. (1991).

By establishing a constitutive relation similar to eqn (4). for the unidirectional lamina
of a composite plate. it will be shown in the sequel that an analogous procedure can be
adopted for the analysis of the bifurcation buckling of metal matrix laminated plates.

2.2. Unidirectional metal matrix composites
Let us consider a unidirectional metal matrix composite material which consists of

perfectly elastic fibers reinforcing an elastic-:"'viscoplastic matrix. The fibers are oriented in
the X'I direction ofa Cartesian coordinate system (X'l.<~XJ ). For transversely isotropic fibers
(xi-x') is the plane of isotropy). the material stiffness tensor of the fibers is given by
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C~:k: = ;.. 1/ JS"JIc!+pi I '(J,Ic();i + J,!SkJ +:x' /)(6,,6 Ik 6 11 + 6lciS 1, J lJ

+ fJl I )(J,,,S I;S II + Jjk b,,6 11 + J"J lie) Ik + 6r,6\,6\k) +;,UloU6\;J a 6 1/ (7)

-h ·tn II"I If) fJ'(1 d In fi . d d -\\ ere I, • P . 1: .. . an ;'. are ve In epen ent constants that charactenze the fiber
material. and can be easily related to its corresponding engineering constants. The above
tensor can be rewritten in a more familiar form using a contracted notation.

CII •
II

symm.

C1 f)
I ~

CI/~'

Ci/~i 0

C/,l 0
C/~I 0

!(C~I-/ - C'//)

o
o
o
o

Clf)
1:06

The clastic stitTness of the isotropic matrix phase is given by

(8)

where I-t"'" and ;.''''' arc Lame constants or the material.
Employing cqns (4)(6) for the tlher and matrix. phases. one obtains the following

viscoplastic constitutive equations for the q-ph~tse (q == j: m)

where

( 10)

with

(II)

For perfectly elastic fibers the plastic strain rate 11;;'/) =:; O. implying that gIn = 0 and
C:;on = C::~\. It is readily seen that the present derivation also includes the more general
case of elastic-viscoplastic fibers. In such a case eqns (9)-( II) can be used subject to the
requirement that the inelastic fibers are initially isotropic.

The overall instantaneous properties of the unidirectional fiber-reinforced material can
be determined by a suitable micromechanical analysis in which the detailed interaction
between tiber and matrix phases is considered. Such a micromechanical analysis was
developed by Pah:y and Aboudi ( 1991 a) by employing the method ofcells ofAboudi (1989).
This composite model is bilsed on the analysis ofa repeating cdL ..md leads to the prediction
of the overall hehavior or various types of compositc:s from the known properties of the
fiber and mutrix materials.

It was shown by Paley and Aboudi (1991 a) that the knowledge of the instantaneous
properties of the inelastic tiber and matrix. phases provides. in conjunction with micro­
mechanical analvsis of the method of cells. the overall instantaneous stiffness of the
unidirectional m'ctal matrix composite. Consequently, from the knowledge of C:;:,('/)
(q = j: m) ~tt any stage of loadi.ng, one can determine the etTcctive instantaneous behavior
of the composite in the form

f'i = C,~I/',k! ( 12)
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where iii and ;;ij are the average stress-rate and strain-rate tensors. and Ctit? is the fourth
order tensor of the effective instantaneous reduced stiffnesses of the composite. Thus. the
composite constitutive equation (12) is a generalization of relation (4), which was estab­
lished for a homogeneous viscoplastic material. The explicit expression of Ci~:/ can be
found in Paley and Aboudi (199Ia). It should be emphasized that the tensor Ci~:/ depends
on the level and history of loading. It is worth mentioning that a constitutive equation of
a similar form was also established by Paley and Aboudi (199Ia) for composite laminates
in which each lamina is a unidirectional metal matrix composite.

3. PLASTIC BUCKLING OF LAMINATED PLATES

[n this section. we will utilize the previously discussed instantaneous constitutive
relation (11) for inelastic unidirectional composites to establish the governing equations
for plastic buckling of metal matrix laminates. To this end. consider a rectangular laminated
plate which consists of several laminae. The middle plane of the laminate coincides with
the x-y plane of the Cartesian coordinate system (xy:). The x and y axes are parallel to
the plate edges. and the origin of the system is taken at a corner. The dimensions of the
pl'lte are: a and b in the x and y directions. respectively. and thickness h in the: direction,
When it is convenient. we will use the following alternative notation for the axes: x I = X.

Xz =Y and XJ = :. Each layer of the laminate is a unidirectional metal matrix composite
which is assumed to he in the plane-stress state. Consequently. the constitutive equation
(12) of the single lamina in its material coordinate system (X',X2X:l) can be rewritten as

i, = Q,~l'P 'I; (i. j = 1.2.4.5.6) (13)

where f l = f.-,.',. f z = f.-,.-,. f 4 = f.-,.-,. is = f.-,x',. if> = i","I' and 'II = ;;", ,',' ,h = 'I,'!,':'
'/~ = 2'1.-,,',. '/~ = 211 .."".11/. = 2'1,', ,'!' The nonzero clements of Q,~VI'are obtained from Ci~'1'
of the corresponding layer [where C,jn- is the instantaneous effective material stilfness
tensor C,j//. eqn (12). which is rewritten in the contracted notation) .tS follows

Q*VI' = ('*I'l' _C*VI'C*"I'/C. VI' (I' J' = 1 2 6)
·1/ "/ I j ,lJ JJ ' , ..

Q,"lV/' = C,"lVI' (i, j =4,5). ( 14)

The plane-stress instantaneous stiffness <ii?' of the lamina, expressed in the global
coordinate system (xy:), is obtained by the appropriate transformation of the above defined
Q,"lVP. In these plate coordinates, eqn (13) becomes

• Q- *VI' • (.. I 2 4 5 6)!i = " 'Ii I, J = , , , , (15)

where i, <lnd 'T, arc the average stress-rates and strain-rates in the lamina expressed in the
plate coordinate system. As usual, the average strain-rates are taken to be equal to the
strain-rates in the plate. Assuming small changes of displacement field during each load
increment. the total strain-rates in the plate in the global coordinates become

(16)

where ti, are components of the assumed velocity field associated with adopted laminated
plate theory. Both higher order and c1assicai plate theories will be employed to establish
the governing equations of the plastic bifurcation buckling of the considered laminated
plate.
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3.1. Higher order plate theory
The adopted higher order shear deformation laminate theory (HSDT) is based on a

third order expansion of the displacement field (Reddy and Phan, 1985). In the present case
of inelastic behavior. the following third order expansion of the velocity components is
assumed:

. 4 .
, '( ) .1, '( , "')1I~ = l' x.y +=,/,,- 3i;'i= 'I',,+CII'()'

li,1 = li'(.\'.y) ( 17)

where Ii. (: and Ii' arc the x, rand =components of velocity of middle plane points; ~x and
~, are rotation rates of tra~sverse normals about they and x axes, respectively.

Substitution of the above defined velocities into (16) leads to the following field of
total strain-rates in the laminated plate:

where the following ddinitions an: employed:

'I~ = ali/Dx. 'Ii = (INi!y. ,,:: =: j«lli/(ly +N/h·).

'I~ = l(~" + (l l i'/Dy) , '1~ = l(lfr. +i1Ii'/l1x).

and

1\:[ = -(4jJhz)(i'hfr.lDx+D1Ii'/i')x1).

K~ = -(4/3h2)(tllfr./()y+(hi'jtly1),

1\:;; = - (4/3h1)(J~ ./Dy + tl~v/Dx+ 2D 1Ii,!{lX Dy).

Ki = -(4/h 2)(lfr,+DliPy). K~ = -(4/h 2)(lfr,+(1 Ii·/i":x).

The in-plane stress resultants are deli ned by

( 18)

( 19)

(20)

f
",z

N, = . a,d=
... hi 2

(i = 1,2.6) (21 )

where a,arc the stress components referred to the global coordinate system. The stress-rate
resultants are deli ned by

(i= 1.2.6)

and
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(22)

as pre\"iously defined, i , = i..., i 2 "; i •• , i 4 = iy=, is = i x=, i 6 = in are the components of
the stress-rate tensor in the plate coordinate system, i.e., i'j = oci,Jct.

The equilibrium equations of the plate in terms of the stress-rate resultants become

N24/2x + 2Q,jcy+ (Cjcx)(N. bi'jcx) + (iJjiJy)(Ny ow/oy)

- (4/h 2 )(iJR4/ex+ iJR,/iJy) + (4/3h2)(iJ2P1/iJ:(1 +20 2P6/0X oy+ 02P2/0y2) = 0

2J"i,/l~x+cA[6jaY-Q4 + (4/h 2)R4 -(4j3h1)(oPt/iJx+oP6/oy) =0

cM6!l~X+ i':,~12/2y- Q, +(4/h2)Rs - (4/3h 2)(oP6/iJX+OP2/iJy) = O. (23)

Here, S. and Nv are the in-plane loads in the x and y directions, respectively, which are
acting at time t. It should be noted that eqns (23) are meaningful during the buckling state
where the rate of deflection of the plate becomes nonzero. In this instant, the out-of-plane
rate resultants (22) become nonzero as well. The in-plane resultants N, (i = 1,2,6) in eqn
(21), on the other hand, are assumed to be constants during the instant of buckling, i.e.,
N,=O.

The instantaneous stifTnesses of the plate are defined by

f
hl 2

I"P n' I"P FP VP VP - vr 2 3 4 (,
(AI/ ,8" .D" .E" ,F,! ,11,/) = . Q'j (I,z,= ,Z",: ,: )d:

• h/2
(i,j= 1,2,6)

f
h'2

U' VJ' FP • VP 2 4 •.
(A'l ,D" ,F'j ) = Q,j (I,Z ,= )d= (t,j =4,5).

-hj2
(24)

Substituting eqns (22), in conjunction with (15) and (18)-(20), into (23) and using the
definitions (24), we obtain the following constitutive equations for the plate:

(I,j = 1,2,6)

and

(25)

The present approach for the determination of plastic buckling load is illustrated for
two types of composite plates as follows:

(I) symmetric cross-ply laminated plate;
(2) anti-symmetric angle-ply laminated plate.

The plates are initially at rest and subjected to a uniform, biaxial pressure. The following
boundary conditions arc assumed:

Ii'(x, 0) = li'(x, b) = 1i'(O, y) = w(a, y) = 0,

P2(x,O) = P2(x,b) = P1(O,y) = Pl(a,y) = 0,

~f2(X,O) = ~f2(X,b) = M,(O,y) = M,(a,y) = 0,

~~~=~~~=~~~=~~~=Q

For cross-ply laminates:

(26)
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u(x.O) = u(x. b) = t~(O • .1') = (a. y) = O.

,\'.. (x.O) = /·/\(x. b) = '\',(0. ~.) ;; ~V,(a. r) = O.. . (27)

The boundary conditions for anti-symmetric angle-ply laminates are

tlt.O) = L~(X. b) = ti(O. y) = li(a• •r) = O.

IV,y(x.O) = 1\'"(x. b) = '\".1(0, y) = ,\',,(a. y} = O.

These boundary conditions are exactly satisfi~d by

7. • nm ,lin
l~' = L rV",rr Sin -x Sin -6 r.

m.rr= I a .

(28)

• x nm: tin 7.. mn fin
t/t, = L ,X",n cos -x sin ~b y. t/t, = L Y",rr sin "("l~ x cos·h"" y. (29)

m.n = 1 a "'.11 ~ I

For cross-ply laminates:

"'.11-" I

T) nm; fin
Ii = I Lim" cos ..... X sin I y.

m,fJ = I II J

for anti-symmetric angle-ply laminates:

, mrr nrr
li = I U"'" sin ... .\"cos I Y.

"',n _Ill)

" ' . nm linL ., "'" Sin ..... X cos r.a h .

nm flIT
I; = L Vim, cos X sin I y.

m.1I ~ I l/ )

(30)

(3\ )

following Reddy and Phan (19H5). h.:t LIS substitute (25), in conjunction with (\9),
(20) ..lnd (24), and using (29) and (30) for cross-ply. or (29) and (3 I) for anglc-ply laminates.
into (23) leads to the following five homogeneous c4uations for each set of numbers m and
II:

(32)

where (~I," .,,15) = (Urllt,. Vm,,, rvmll.Xmn • rm,.). The coefJicicnts Kr~/('''''' arc mode-depen­
dent linear combinations of the instantaneous stifTnesses of the inelastic plate and can be
identified with the combinations of elastic stifTnesses denoted by elj in the Appendix of
Reddy and Phan (I985). To this end, the elastic stiffnesses (Ali' BI}. D;j• ... ) there should be
replaced by the corresponding instantaneous stiffnesses (A~}', B,~}', D~}', .. .). For example,
the expression for Kjf{mll) would therefore be given by (nm/a)], A ~'f + (mr/ b)],A~:. The
nonzero element of G)j"l is given by

In order to obtain a nontrivial solution to (32). singularity of the 5 x 5 matrix ofcoetTicients
must be required. This leads to the following buckling condition

(33)

where KVPlmn) is a 5 x 5 matrix formed by the coefficients Kt/(",,,!, and 'fO'PI"'''' is a 4 x 4
matrix obtained from K VP

(",,,) by deleting the row i = 3 and the column} = 3. From (33),
one can see that the bifurcati~n buckling of the plate occurs when the combination of
axial loads N,(mn/a) 1 + N,,(nrr/h)l for any mode is equal to the above expression of the
instantaneous stitfnesses of the laminate (given by the right-hand side of the equation). In the
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process of the determination ofplastic buckling. the loads have to be applied progressively in
an incremental manner. At each load increment the buckling condition. eqn (33), has to be
checked to verify whether it is satisfied. In the case of a perfectly elastic composite plate,
where the instantaneous properties are constants, eqn (33) readily provides the buckling
load in terms of the laminated plate elastic properties (Reddy and Phan, 1985).

An important observation concerning the plastic buckling of inelastic plates is in order.
Although the inelastic plate is initially anisotropic, additional anisotropy is developed due
to the plastic flow of the inelastic phases (e.g., the metallic matrix). This follows from the
fact that the instantaneous effective stiffnesses of the plate, which describe its anisotropy,
vary with loading history. This implies that if buckling of the inelastic plate takes place in
accordance with (33) at a certain mode (mn), the corresponding elastic buckling of the same
plate (obtained by disregarding the plasticity effects) might occur at a different mode. Thus,
the inclusion of plasticity effects of the constituents in the buckling analysis might change
the load level and mode of buckling.

3.2. Classical plate theory
The following displacement rate field, associated with the classical laminated plate

theory (CPT), is assumed:

UI = u(x, y) -z iJiil/ox

liz = li(x, y) -z olil/oy

UJ = li'(x, y). (34)

In the framework or this theory, we will consider the following two types of uniformly,
biaxially compressed laminated plates:

(a) anti-symmetrical angle-ply plate;
(b) orthotropic plate (unidirectional single-layer or symmetric cross-ply laminate).

In the first case of an angle-ply laminate, the bifurcation buckling of the plate is governed
by the following set of equilibrium equations:

L:/,Uj = 0 (i,J = 1,2,3). (35)

In the above equation, the differential operators LtP are obtained from the well known
classical theory of laminated plates. The plate is initially at rest and the following boundary
conditions are chosen:

The solution is

li'(.X',O) = Ii'eX', h) = li'(O, y) = ~'(a, y) = 0,

v(x,O) = v(x, b) = u(O, y) = u(a, y) = 0,

~k~=~k~=~~~=~~~=~

N.,}.(x, 0) = Nx}'(x, b) = Nxy(O, y) = Nxy(a, y) = o.

x ,mn nn
u = I Umn sIn -x cos -b y,

m.n- I a

'X: m1t. nrr
V= I Vmn cos -a x Sin -b y,

m.,,-I

'Xl • nut . n1t
Ii' = I Wmn Sin -a x Sin -b y.

m.n,.1

(36)

(37)
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Substituting (37), in conjunction with (22), into (35). and requiring singularity of the matrix
ofcoefficients of the resulting equations. we obtain the following buckling condition for the
considered angle-ply laminate (Whitney. 1987) :

(38)

where

J\PI",") = (A ~im Z+ A ~~nZ(a/ b) 2)(A ~~m Z+ A ~fnZ(a/ b) z) - m 2n2(a/ b)' (A ~ ~ + A ~~'):

J~PI",") = (A ~im Z+ A ~~nZ(a/ h) z)( B ~.~m Z+ 3B ~~nZ(a/ b) z)

- 3m'n z(a; h) 2(.'1 ~'; + A~nZ(B'I~fII: + B;:II:«(// b)')

J \ PI",") = (A ~:fII' +A~;"'(a/ h) ')(3B ~.~m: +B~I", (ai h) ')

- mZ,,'(a/ h)'(A ~.; + A~n z(B~':mz + 3B~:n'«(// h)').

In the case of a symmetrically laminated (all B" = 0). orthotropie plate (D II, =

D: h = 0) that is simply supported, (35) is simplified to the following single equation:

D ~; (1~ lipx~ +2( D ~~. + 2D ~:{:) (1~ liR.\·z (ly' + D ~~ iJ~liPy~

= N, (1'li'/iJx z+ 2N,.. (lzli,/(IX iJy+ N, ihi·!/\'. (JlJ)

For biaxial load, the buckling condition becomes

Having obtained a buckling condition of a metal matrix laminated plate [e.g. eqn (:\5),
eqn (38), or eqn (40)J in terms of the instantaneous properties of the inelastic plate, we ean
proceed and determine the bifurcation buckling load level according to the following
incremental procedure.

(a) At a given load level the stress resultants and the strain-rate field arc known.
(b) These q\lantities determine the stresses and strain-rates of the single lamina.
(c) The determined fields of the lamina arc used, in conjunction with the micro­

mechanical analysis, to obtain the instantaneous effective stitfnesses C,";// of the unidi­
rectional ply [eqn (12)J.

(d) The instantaneous plate stiffnesses [defined by eqn (24)] can be readily determined
from the computed C,";k'/ of the laminae.

(e) The use of the instantaneous plate stiffnesses in a buckling condition determines
whether buckling of the plate occurs at the present load level. If the buckling condition is
not satisfied with the current plate stiffnesses, the load is modified and the above procedure
is repeated.

The present method of the determination of plastic bifurcation buckling can be applied
for various types of inelastic laminated plates, subjected to various boundary conditions.
If an analytical, exact solution to the governing equations is not possiblc. approximate
methods (e.g.. numerical) can be employed in conjunction with the proposed methodology.

4. APPLICATIONS

The proposed method of bifurcation buckling analysis of metal matrix laminated plates
is illustrated for the prediction of the critical load of a boron/aluminum composite system.
The boron fibers arc assumed to behave as a perfectly elastic material, whereas the aluminum
matrix is represented as an elastic-viscoplastic work-hardening material. The aluminum
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alloy 2024-T4 is an almost rate-insensitive material at room temperature, but its rate
sensitivity significantly increases at elevated temperatures. In this paper, the inelastic
response of the matrix material is described by Bodner and Partom's (1975) unified visco­
plasticity theory. This theory does not assume the existence of a yield condition, which
eliminates the need to specify loading or unloading criteria, and the same equations can be
directly used in all stages of loading and unloading. According to these equations plastic
defonnation always exists, but it is negligibly small when the material behavior should be
essentially elastic.

The flow rule function A in eqn (3) is given, according to this theory, as follows:

(41 )

where Ii == ~(n+ I)/n and J~ == ~SIIS" is the second invariant of the stress deviator; Do and
n are inelastic material parameters. and 2 is a state variable that represents the hardened
state of the material with respect to resistance to plastic flow. In the case of isotropic
hardening, the evolution law of this variable is given by

(42)

where 2 0 , 2 I and m are additional inelastic parameters of the material. Note that the plastic
work Wp , whose rate is ff'p == (T;/l~:', is taken as the measure of hardening. The physical
significance of the above inelastic constants is as follows. The parameter Do is the limiting
strain mte, 2 0 is related to the "yield stress" of a uniaxial stress-strain curve, and 2 1

is proportional to the ultimate stress. The material constant m determines the rate of
work hardening. and the rate sensitivity is controlled by the temperature-dependent par­
ameter fl.

In Table I, the material pammeters of the 2024-T4 aluminum alloy at v,trious tem­
peratures are given in the fmmework of Bodner Partom theory. The table presents the
clastic moduli, E and v, Young's modulus and Poisson's ratio, respectively, and five inelastic
parameters, namely; Do. 2 0 , 2 I, m and n. It should be noted that higher temperatures are
associated with lower values ofn, which results in an increase of the material rate sensitivity.
In Fig. I, the stress-strain response of the material is given for various values of temperature.

The boron fibers arc eonsidered to be perfectly elastic and isotropic with a Young's
modulus of 400 GPa and Poisson's ratio 01'0.3.

The present approach is applied to investigate square (a == h) laminated cross-ply and
angle-ply plates. In all cases the thickness of each ply is I mOl. The effects of the following
parameters on the buckling of the plate will be considered; length-to-thickness ratio (0/h),
fiber volume ratio (VI)' applied strain-rate ('itt), angle of lamination (0). number of plies
(k) and temperature (n. Some of these effects are examined in the framework of CPT and
HSDT.

The inelastic buckling of the composite plates is analyzed by the application of a
uniaxial compressive stress loading ri.t< while controlling the strain-rate value ~u. For
convenience the stresses and strain-rates are shown in the figures as positive.

Table I. Material const.mts of an aluminum alloy (2024-T4)

Temperature E Do Zo Z,
(C) (GPa) v (s - ') (MPa) (MPa) m "
20.0 72.4 0.33 10.000 340 435 300 10.0

148.9 69.3 0.33 10.000 340 435 300 7.0
204.4 65.7 0.33 10.000 340 435 300 4.0
260.0 58.4 0.33 10.000 340 435 300 1.6
371.1 41.5 0.33 10,000 340 435 300 0.6

In the elastic region: isotropic material with Young's modulus E and Poisson's ratio v;
in the plastic region: isotropic work hardening material.
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Fig, I. Stress -strain curves in simple tension at several temperatures of an aluminum all"v I~o~.t­
T~) as characterized in Table I. with an applied strain rate of 0.01 s '.

Let us consider a square symmetric cross-ply. [0/90].. laminated plate under simply
supported boundary conditions. Within CPT. the buckling condition of this laminate is
given by (40). In Fig. 2. the critical stress load. a". for plastic buckling of the present metal
matrix laminated plate at a temperature 01'204.4 'C is shown against the length-to-thickness
ratio a/h for compressive strain-rates ~u = 10- ~ s - I and 'i" = I0 I> S - 1. It is clearly seen
that the effect of the material rate sensitivity on plastic buckling of the plate is weak in the
present case. Also shown in the figure is the graph of the buckling load of the plate when
it is assumed to be perfectly clastic (i.e., when the inelastic efTects of the aluminum matrix
arc disregarded). This reveals that the plastic effects of the metal matrix decrease the ability
of the plate to sustain loading without buckling. The decrease of the buckling load with
increase ofa/h should be noted. Furthermore. for a suniciently thin plate the plastic buck Ii ng
level approaches the corresponding clastic one. This result is expected since a thin plate
buckles at relatively low load levels before appreciahle plastic cll'ects develop.

Consider next an anti-symmetrically laminated. angle-ply plate subjected to boundary
conditions (26), (2R), and (36) which correspond to HSDT and CPT. respedively. The
corresponding buckling conditions arc determined by using eqns (33) and (3X). In Fig. 3.
a comparison between the buckling loads predicted by CPT and HSDT of a two-layered
[± 30) angle-ply square laminated plate at 204.4'C is shown for an applied strain rate of
10 - ~/s. The figure also includes the corresponding buckling loads of a perfectly clastic plate.
It is readily seen that in the present situation the buckling loads obtained by employing
CPT and HSDT arc close in both cases of inelastic and perll.'ctly clastic phltes. For smaller
values of a/h it is expected that the buckling loads of the plate obtained by the two theories
would be appreciable. For example. assuming £1/ h = 5. the huck ling load obtained via CPT
is about 1.3 times the corresponding buckling load level obtained from IISDT when the

1400

1200

~ -107,
ax

1000 ~ -6
,/.;107,

800

OcrlMPaI

600

400

200

[0"190-].
VI-~O"l_
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Fig. 2. Buckling load against length-to-thickness ratio of a cross-ply laminate.
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Fig. 3. Buckling load against length-to-thickness ratio of an angle-ply laminate.

plate is assumed to be perfectly elastic. It is not possible. on the other hand, to predict
plastic buckling of the plate for such a low value of a/h in the framework of small strain
theory considered in the present investigation. The figure demonstrates again the importance
of inclusion of the plastic effects. except for thin plates where buckling of the plate already
occurs in the elastic region.

In order to study the effect of temperature on the plastic buckling of laminated plates,
let us consider square angle-ply laminates at T = 20"C and T = 204.4'C. In Fig. 4a, the
plastic buckling loads of several types of two-layered angle-ply square laminates arc shown
at these temperatures. These buckling loads. normalized with respect to the corresponding
clastic buckling load (i.e., when the metal matrix is assumed to behave as ,10 clastic material),
arc shown in Fig. 4b. It is readily seen that at the elevated temperature, the ability of the
plate to support loading is reduced. The amount of this reduction depends on the value of
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Fig. 4. (a) Critical load against angle of lamination of an angle-ply laminate. (b) Critical load.
normalized with respect to the corresponding elastic buckling stress. against angle of lamination of

an angle-ply laminate.
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Fig. 5. Buckling load against angl.: of lamination of an angl.:-ply laminat.:. for ditTcn:nl valu.:s of

appli.:d strain-rat.:.

the lamination angle 0. Furthermore. the elTect of taking into account the plastic behavior
of the metal matrix on the buckling load of the plate depends on 0 as well. The normalized
buckling load. however. appears to be slightly dependent on the temperature. The impli­
cation is that the temperature reduces the elastic and plastic buckling loads. in the present
cases. by almost the same proportion.

Let us nmsider the elastic and plastic buckling of an anti-symmetric two-layered [± OJ
laminated plate predicted by using HSDT. Figure 5 exhibits the variation of the resulting
critical loads against O. By a comparison with the perfectly elastic case. the ligure shows
that plasticity significantly decreases the buckling loads. Due to the rate sensitivity of the
aluminum matrix at 204.4 C. this decrease depends on the applied strain-rate. For a slowly
loaded inelastic plate. the buckling point is lower than that obtained by applying a higher
strain-rate. For small lamination angles O. however. the buckling of the plate is approxi­
mately elastic and thercrore it is not allcctcd by the rate of the applied loading. One can
note that whaeas the elastic buckling exhibits. in the present tiber/matrix system. a sym­
metry with respect to lJ = 45. this symmetry is completely lost in the inelastic case. It is
interesting to record the total strains of the angle-ply platcs at the instant of buckling. In
Table 2 the buckling stresses and strains. predicted by employing HSDT. of the inelastic
plates [±lJ! arc given for two values of applied strain rates: ,/" = 10 2 S I and 10 "s I.

It is n:adily seen that appreciable strains develop before buckling takes place for angle-ply
plates with lamination angle 0 at the vicinity of 50'. It should be noted that the buckling
strains arc significantly higher for the low loading rate of angle-ply plates with lamination
angles in this region. -('his result is expected. since loading of an inelastic plate at a low
strain-rate up to buckling is associated with appreciable plastic l10w of the viscoplastic
melal matrix.

Tank 2. Slr"""s and strains at th" instant of huck ling. pr"di"t"J via IISDT. of l ± /I J angt,,­
ply plakS. for two valu.:s of appli"d strain rat"s (a '/1 = 35.1', = CU. T= 20-l.-l C)
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Fig. 6. Critical load. normalized with respect to the corresponding elastic buckling stress. against
fiber volume ratio.

It is possible to study the effect of different values of fiber volume fraction vf on the
plastic buckling of a metal matriK composite plate. To this end, consider a [± 30] angle-ply
laminated plate with a/h = 40. at a temperature of 204.4°C. In Fig. 6 results for the plastic
buckling of the plate using CPT are shown for three values of vf: O. 0.3 and 0.5. Here, the
buckling levels are normalized with respect to the corresponding buckling loads of the
perfectly elastic plate. Plastic buckling loads for two different loading rates are shown in
the figure: 10 - 2 S - I and 10 - 6 S - 1. The case of t', = 0 corresponds to a homogeneous plate
which huckles at the present value of a/h =40 in the elastic region. As the reinforcement
volume ratio increases. the buckling of the plate takes place in the plastic region. This is
due to the increasing effect of the fibers. as a result of which the plate can sustain higher
loading. These high load levels lead to yielding and plastic flow of the metal matrilt. Since
for /', = 0 huckling occurs in the clastic region far away from the yield point. the effect of
diffcrent load rate Icvels is absent. For moderate valucs of t'J this effect is pronounced due
to the eltistence of plastic flow. For higher values of vr the effect of fibers is dominant and
the rate sensitivity of the composite plate is weak.

Let us study the effect of number of plies on the plastic buckling load level of a [±0h
angle-ply composite plate. To this end. consider a [± 30lk with k == I. 2. 3. The resulting
plastic buckling loads obtained within CPT and HSDT are shown in Fig. 7. It is readily
observed that, as in the perfectly clastic case, the plastic buckling increases with increasing
number of plies of the laminated plate. It can be seen that HSDT predicts slightly lower
buckling loads as compared with CPT. The small differences between HSDT and CPT
predictions in the present situation are attributed, as previously mentioned, to the relatively
high value of length-to-thickness ratio of the laminated plate (a/h = 30).

5. CONCLUSIONS

By employing a micromechanical analysis which can provide the instantaneous prop­
erties of metal matriK composites, the plastic buckling of laminated plates is determined. It
is shown that in the determination of the critical loading of the plate. the satisfaction of the

[:t30]k a/h-30

vf·0.3 " -2SOO "7u "1O 7.

" 400 T·204.4"C e::::I HSOT
OCr

300 ~1MPal CPT

200

100

0
2 3

k

Fig. 7. Buckling load against number of layers of an angle-ply laminate.
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corresponding buckling condition has to be checked at all stages of loading history. The
method is illustrated for the plastic buckling analysis of boron ..l1uminum composite plates
under various situations. The effect of the elastic-viscoplastic behavior of the aluminum
matrix and its rate sensitivity at elevated temperatures on the plastic buckling of the plates
is presented.
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