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Abstract—A method is proposed for the determination of plastic bifurcation buckling load of
metal matrix composite plates. The metallic matrix behavior is described by an elastic-viscoplastic
constitutive law, while the fibers are assumed to be either elastic or elastic-viscoplastic material.
The approach is based on the loud level and history dependent instantaneous effective propecties
of the inelastic plate, which are estublished by a micromechanical analysis. An incremental procedure
is developed in which a buckling condition has to be established and its fulfilment must be checked at
each increment. The method is applied for the prediction of the plastic buckling of boron/aluminum
compaosite plates in various situations, by cmploying the classical and higher order shear deformation
plate theorices.

1. INTRODUCTION

The determination of the buckling load of perfectly elastic composite plates has received
considerable attention [see Leissa (1985, 1987) for extensive reviews]. Most of the papers
covered in these reviews utilize the classical theory of plates. The use of a first order theory
in the study of bifurcation buckling of clastic plates can be found in Whitney and Leissa
(1969) and Whitney (1987). Analyses of composite plate buckling by employing higher
order theories can be found in the recent review by Kapania and Raciti (1989).

The stability analysis of homogencous inclastic plates is much more complicated than
the perfectly elastic case, due to the inherent nonlinearity of the material constitutive law,
The study of bifurcation buckling can be performed by employing total deformation
plasticity (c.g., Bijlaard, 1949) or incremental theory (e.g., Hendelman and Prager, 1948).
For extensive reviews ol this subject, see Hutchinson (1974) and Bushnell (1982). Recently,
the influence of material rate sensitivity on the elastic-plastic buckling of structures has
been investigated by Tvergaard (1985), Bodner er al. (1991), and Paley and Aboudi (1991b).

The theory of uniqueness and bifurcation in time-independent elastic-plastic materials
was given by Hill (1958). It was shown by Tvergaard (1989) that Hill's bifurcation condition
can be satisfied for elastic-viscoplastic materials only at the elastic buckling load. This is
due to the high strain-rates that occur at the instant of buckling. In practice, imperfections
and inertial effects reduce the instantaneous changes of buckling strain rates (Bodner et al.,
1991). The use of strain-rates in the pre-buckled state in an appropriate buckling condition
of a viscoplastic material provides lower bounds to the actual buckling loads.

The prediction of plastic buckling of metal matrix composite structures is difficult due
to the complicated interactions between the inelastic matrix and reinforcement. In previous
investigations, the inclastic effects of the matrix were neglected by assuming perfectly elastic
behavior for all loading levels. Obviously, this is a restriction since a metal matrix composite
deforms plastically at the early stages of loading. For example, in a boron/aluminum
composite the aluminum matrix yields at a strain of about 0.002, which is far away from
the ultimate strain of the composite. Thus, an efficient utilization of the metal matrix
composite up to failure must take into account the plastic flow of the matrix. The plastic
buckling analysis of a metal matrix composite structure requires the knowledge of its
instantaneous stiffnesses which depend on the history and loading level. The overall instan-
taneous properties of the inelastic composite can be determined by a suitable micro-
mechanical analysis from the known material parameters of fiber and matrix. In the
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framework of the classical incremental plasticity theory. bounds on the overall instan-
taneous elastoplastic moduli of periodic composites were determined by Accorci and Nemat-
Nasser (1986) and Teply and Dvorak (1988).

Explicit expressions of the effective instantaneous properties of metal matrix com-
posites were recently given by Paley and Aboudi (1991a). The derivation of the instan-
taneous properties was based on the micromechanical method of cells (Aboudi, 1989) in
which the metal matnix is assumed to behave as an elastic-viscoplastic material reinforced
by elastic or elastic-viscoplastic fibers. It was shown by Paley and Aboudi (1991a) that at
any stage of loading. the current stiffnesses of the inelastic fiber and matrix material can be
employed to generate, in conjunction with the micromechanical analysis, the overall stifiness
tensor of the unidirectional composite. The instantaneous stiffnesses of metal matrix com-
posite laminates were obtained by using the standard lamination theory.

In the present paper, the previous micromechanical method for the derivation of
instantaneous properties of metal matrix composites is utilized for the bifurcation buckling
analysis of composite plates, where the matrix matertal could be elastic—viscoplastic. In
particular, the Bodner and Partom (1975) model is employed in the applications given in
this paper. The method is based on the development of governing buckling equations of
the composite inelastic plate, which are expressed in terms of the velocity field, and involve
the instantancous properties of the laminated plate. Consequently, the derived buckling
condition, which is obtained from the governing equations, depends on the loading level
and its history. Due to the existing plastic behavior of an inelastic phase, the method of
obtaining the critical buckling load level is incremental. At each load increment the fuliil-
ment of the derived buckling condition is examined. If the condition is satisfied. then the
buckling load level of the composite plate has been achicved ; otherwise the incremental
procedure is continucd.

The method is illustrated tor various types of boron/aluminum composite plites. Both
the classical and higher order shear deformation plate theories are employed. The eflects
of fiber volume ratio, plate thickness, material rate sensitivity, temperature, ply oricntation
and total number of layers on the plastic buckling load of the plate are studied. Comparisons
with the corresponding buckling loads obtained by disregarding the plasticity cffects of the
metal matrix are presented.

2. MATERIAL STIFFNESS REDUCTION DUE TO PLASTIC FLOW

2.1. Homogeneous viscoplastic materials

Consider a homogencous isotropic elastic-viscoplastic material subjected to a slowly
increasing external loading. At the first stage of loading, the material behavior is essentially
elastic and is characterized by its elastic stiffnesses. At a later stage, plastic deformation
develops, leading to anisotropic behavior of the material, which is described by its instan-
tancous reduced stiffness properties. This stiffness reduction, which is caused by the plastic
flow of the material, can be determined at any instant of the loading by the following
considerations.

The total strain-rate tensor of the material is assumed to be a sum of two components:
reversible (elastic) n and irreversible (plastic) nh.ie.,

Ny = 'lx{j + r[f;. (h

The stress-rate tensor t,; is related to the clastic part of the total strain-rate by the
generalized Hooke's law (small deformations are assumed) :

rl[ = Ci/k/r’/fl (2)
where C,,, is the fourth order elastic stiffness tensor of the material, and the summation

convention is employed on repeated italic letters. The plastic components of the strain-rare
are controlled by the Prandtl-Reuss flow law as follows:
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;= As, 3)

where s, = ,,—d,,04/3 is the deviatoric part of the stress tensor ¢, J;, is the Kronecker

delta. and A is the flow rule function of the adopted viscoplastic constitutive model which
describes the inelastic behavior of the material.

The following constitutive relation for the initially isotropic homogeneous viscoplastic
material can be established (Paley and Aboudi. 1991b):

tl/ = ijlznkl (4)

where the instantaneous strain-rate dependent viscoplastic moduli Cf; of the material are
defined by

:;lfi = C;,k,—gsi,sk,. (5)
In (5). the scalar g is defined by the following equation:

P
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g= (6)
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where g is the elastic rigidity of the material. Equations (4)-(6) were established after
various manipulations by employing the flow rule (3) in conjunction with eqns (1) and (2).
Tt should be noted that these relations were established without the use of the yield function
concept. In this paper, the superseript (()'7 is used to denote the various current propertics
which characterize the viscoplastic material (and structure) that vary with loading history.
It can be readily seen that the reduction of material stiffness, caused by plastic flow, is a
function of the history and the current state of loading.

The instantancous constitutive relation (4) was previously employed by the authors to
investigate the bifurcation buckling of viscoplastic plates (Paley and Aboudi, 1991b). This
was performed by utilizing, at any stage of loading, the current value of €]} of the material
at the buckling condition of the plate, which was derived from the governing equations in
conjunction with the specified boundary conditions.

It can be obscrved that the rate-dependent CJf; are similar to the form of the rate-
independent instantancous moduli used by Hill in the derivation of his bifurcation condition
{sce, for example, eqn (3.4) of Tvergaard (1989)]. One can readily sec from eqn (6) that
g = 0 when the matertal behavior is elastic, whereas g is positive when plastic flow takes
place. The latter follows from the fact that ¢ is given in terms of the ratio of the plastic
work rate (s,5) to the rate of the total work of deformation (s,,1,,) which does not include
volume changes.

In the present case of a viscoplastic material the strain-rate at the pre-buckled state is
used in computing C/f;. At the instant of buckling, however, high strain-rates develop in
the material. Consequently, the predicted values of critical loads are lower bounds of
the actual values. Thus the obtained bifurcation results are approximate, representing
predictions for an analogous time-independent material. Similar arguments were given by
Bodner er af. (1991).

By establishing a constitutive relation similar to eqn (4), for the unidirectional lamina
of a composite plate, it will be shown in the sequel that an analogous procedure can be
adopted for the analysis of the bifurcation buckling of metal matrix laminated plates.

2.2. Unidirectional metal matrix composites

Let us consider a unidirectional metal matrix composite material which consists of
perfectly elastic fibers reinforcing an elastic—viscoplastic matrix. The fibers are oriented in
the x direction of a Cartesian coordinate system (x’.x4.x}). For transversely isotropic fibers
(x5-x4 is the plane of isotropy), the material stiffness tensor of the fibers is given by
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Ve = /:('“‘51,‘5.&1"'!"!1‘”(‘)‘:kd;f}"dddk,)+1(”(0.uf51k5u+dk:‘jlldii)
+p )(dxkljl/dl{+‘jjkélx(5ll+dxldl/(s[k +0,0101) +710,0,0 0, (7T
. AR : y i .
where A, 1! 7 B and 7 are five independent constants that characterize the fiber

matenal. and can be easily related to its corresponding engineering constants. The above
tensor can be rewritten in a more familiar form using a contracted notation.

f § N
[cn cw e o 0 o)
cy oW 0 0 0
Y

- !(C(‘t‘r . Ct‘!‘}) 0 0

C¥e 0
symm. A

The elastic stiffness of the isotropic matrix phase is given by
j;'l:; = ;"m)‘iu (SH + ““’”(dv’( (ij +(5¢f§1k ) (8)

where 1 and 2™ are Lamé constants of the matcerial.
Employing cqns (4)-(6) for the fiber and matrix phases, onc obtains the following
viscoplastic constitutive equations for the g-phase (¢ = f.m)

r:n,/) c lrl‘(q) Ilu) (9)
where
Clit = Clli—g sy (10)
with
[ ').uun Etn'llhf]
g'll = h/) Eq) ’ q} * (E l)

(e,'l
snm et U 'Iu

For perfectly elastic fibers the plastic strain rate /! = 0, implying that ¢ = 0 and
CHi = C). It is readily seen that the present derivation also includes the more general
case of elastic-viscoplastic fibers. In such a case eqns (9)-(11) can be used subject to the
requirement that the inelastic fibers are initially isotropic.

The overall instantancous properties of the unidirectional fiber-reinforced material can
be determined by a suitable micromechanical analysis in which the detailed interaction
between fiber and matrix phases is considered. Such a micromechanical analysis was
developed by Paley and Aboudi (19914) by employing the method of cells of Aboudi (1989).
This composite model is based on the analysis of a repeating cell, and leads to the prediction
of the overall behavior of various types of composites from the known properties of the
fiber and matrix materials,

It was shown by Paley and Aboudi (1991a) that the knowledge of the instantancous
properties of the inclastic fiber and matrix phases provides, in conjunction with micro-
mechanical analysis of the method of cells, the overall instantancous stiffness of the
unidirectional metal matrix composite. Consequently, from the knowledge of CJ¢
(g = f.m) at any stage of loading, one can determine the effective instantaneous behawor

of the composite in the form

fzr‘ = Ci,‘:k‘l;“"ikf ( l 2)
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where £, and f7,, are the average stress-rate and strain-rate tensors, and C%” is the fourth

order tensor of the effective instantaneous reduced stiffnesses of the composite. Thus, the
composite constitutive equation (12) is a generalization of relation (4), which was estab-
lished for a homogeneous viscoplastic material. The explicit expression of C%” can be
found in Paley and Aboudi (1991a). It should be emphasized that the tensor C2,” depends
on the level and history of loading. It is worth mentioning that a constitutive equation of
a similar form was also established by Paley and Aboudi (1991a) for composite laminates
in which each lamina is a unidirectional metal matrix composite.

3. PLASTIC BUCKLING OF LAMINATED PLATES

In this section. we will utilize the previously discussed instantancous constitutive
relation (12) for inelastic unidirectional composites to establish the governing equations
for plastic buckling of metal matrix laminates. To this end. consider a rectangular laminated
plate which consists of several laminae. The middle plane of the laminate coincides with
the x-y plane of the Cartesian coordinate system {xyz). The x and y axes are parallel to
the plate edges, and the origin of the system is taken at a corner. The dimensions of the
plate are: @ and b in the x and y directions, respectively, and thickness A4 in the = direction.
When it is convenient, we will use the following alternative notation for the axes: x; = x.
x, = yand x; = =. Each layer of the laminate ts a unidirectional metal matrix composite
which is assumed to be in the plane-stress state. Consequently, the constitutive equation
{12) of the single lamina in its material coordinate system (¢ x3.x%) can be rewritten as

L=0M", (.j=1,2.4,56) (13)

where € ". Tr=Teen Ta = Topen Ts = Toen To = T a0d 1= o0 2= 0,
fa= 2:7‘ o qg = :;‘:,‘.q,, =2y, The nonzero elements of Q.**" arc obtained from C**7
of the corresponding layer [wht.rc C**" is the instantancous effective material suﬂ‘m..ss

tensor C247, eqn (12), which is rewritten in the contracted notation] as follows

"'h

y&f’ C*H’ C;p}!ri’ mEP/C.VP (“j:. l.2.6)
and

=03 (Lj=4,5). (14)

The plane-stress instantaneous stiffness 0,/” of the lamina, expressed in the global

coordinate system {xyz), is obtained by the appropriate transformation of the above defined
*¥7_In these plate coordinates, eqn (13) becomes

®FP

=02 (i,j=1,2,4,56) (15)

where 7, and 4, are the average stress-rates and strain-rates in the lamina expressed in the
plate coordinate system. As usual, the average strain-rates are taken to be equal to the
strain-rates in the plate. Assuming small changes of displacement field during each load
increment, the total strain-rates in the plate in the global coordinates become

where u, are components of the assumed velocity field associated with adopted laminated
plate theory. Both higher order and classical plate theories will be employed to establish
the governing equations of the plastic bifurcation buckling of the considered laminated
plate.
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3.1. Higher order plate theory

The adopted higher order shear deformation laminate theory (HSDT) is based on a
third order expansion of the displacement field (Reddy and Phan, 1985). In the present case
of inelastic behavior, the following third order expansion of the velocity components is
assumed :

1

éfl: S+ OWEX)

iy = u{x, }'H~::/}Y -

. 4 .
iy = X, v)+of, — e SN+ W Cy)

Wi, y) (17

i
where ., ¢ and w are the x, » and - components of velocity of middle plane points; , and
¥, are rotation rates of transverse normals about the y and x axes, respectively.

Substitution of the above defined velocities into (16) leads to the following field of
total strain-rates in the laminated plate:

. V2o K S TIPS - 2y
o =mv4oi+owls A=t oRi ot de = ngdore/2 4 2 w2,
N 5 2,2 s O owtn
Hoy = a7k 20 o= oRy/2, (18)
where the following definttions are employed :
Ny = da/ox, nh =08dyv, e = LAy +00/0x),

Y = S, +OAr). 0§ = Y+ 0/x), (19
and

KO = O o, KY =00 J0r. kY= 0g 0+ o,

K= — (@3N Jox + OHifax?),

K= — @30 (O, [0y + dNior?),

KD = — (4302 JOy + O, J0x + 203 /0x Oy,

k1= — @), + i), K= — (A1) + O/ 0x). (20)

The in-plane stress resultants are defined by

A2
N,:J G,d: (i=172.6) @

ey

where 4, are the stress components referred to the global coordinate system. The stress-rate
resultants are defined by

k2

(1\",. I"Z‘.P,‘) = J

—k

f(l.2.29dz (i=1,2,6)

and
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Ry 2

(Q',,R‘)r-j t(l,z)d: (i=4.5); (22)

2

as previously defined, t = T, T; = 1,,. T4 = 1,z T5 = T,.. T4 = £, are the components of
the stress-rate tensor in the plate coordinate system, i.e., t;; = dd;,/Ct.
The equilibrium equations of the plate in terms of the stress-rate resultants become

GO, IEx+CQ /ey + (8/x)(N, 8% /Ex) + (0/Oy)(N, dw/Cy)

— (4R (@R, /3x+CR;/0y) + (4/3h*) (02 P, [0x* +20* P, /ox dy + 3 P,/dy*) = 0
CM\jCx+EMgldy— Q.+ (3R Ry — (4/3R*)(OP,[0x+8P¢/dy) =
EMJEx+EM /2y — Qs+ (4R R~ (4/3h7) (9P 0x+ 0P 1]dy) = 0. (23)
Here. v, and N, are the in-plane loads in the x and y directions, respectively, which are
acting at time ¢, It should be noted that eqns (23) are meaningful during the buckling state
where the rate of deflection of the plate becomes nonzero. In this instant, the out-of-plane
rate resultants (22) become nonzero as well. The in-plane resultants N, (i = 1,2,6) in eqn
(21). on the other hand, are assumed to be constants during the instant of buckling, i.e.,

N, =0.
The instantaneous stiffnesses of the plate are defined by

(AT B!T. D,‘,".E,’,".{’,‘,".II”')“J‘ Oir(l,2,24,23,24,2%d: (Lj=1,2,6)
A;’.D,’,"’.f”’)—f 01,2429 dz (i, =4,9). (29)

Substituting eqns (22), in conjunction with (15) and (18)-(20), into (23) and using the
definitions (24), we obtain the following constitutive equations for the plate:

(N MLP) = (AN B ES I+ (B, DY PN + (BN FUE HEDRE (1,5 =1,2,6)
and

(01, R) = (A1F, D"} +(DIF FIM] (i, j=4.5). (25)

The present approach for the determination of plastic buckling load is illustrated for

two types of composite plates as follows:

(1} symmetric cross-ply laminated plate;
(2) anti-symmetric angle-ply laminated plate.

The plates are initially at rest and subjected to a uniform, biaxial pressure. The following
boundary conditions are assumed :
w(x, 0) = w(x, b) = w(0, y) = w(a, ) =0,
Py(x,0) = Py(x,b) = P,(0,5) = Pi(a,y) =0,
M (x,0) = My(x,b) = M,(0, y) = M\(a, y) =0,
b(x.0) = ¥ (x,6) = ¥,(0, ) = ¥, (a, ) = 0. (26)

For cross-ply laminates:
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u(x.0) = u(x. b) = (0, v) = (a. y) = 0.
No(x,0) = N, (x.h) = N(0.3) = N(a. y) = 0. (27

The boundary conditions for anti-symmetric angle-ply laminates are

t(x.0) = &(x.b) = a(0. y) = u(a. v) =0,
Ny(x,0) = N (x.0) = NV ,(0,1) = N, (a.¥) = 0. (28)

These boundary conditions are exactly satisfied by

x mn nxw

w= %Y W, sin—uxsin—y,
mn =1 a h
. =z m an . : mn nr
o= Y Xgcos—xsin——y ¢, = 3 VY, sin-—xcos - J. (29)
mn=1 a b ‘ ma=| a h
For cross-ply laminates :
x mn  HT . 284 nn
1= }: Uy COS$ =~ XS8IN - -y, = Z Fom 81N~ X €COS - 1. (30)
mon - | a h ma = | a h ’
For anti-symmetric angle-ply laminates:
. ! .. mn nn ) Mmn . nn
u= Y U,,sin- xcos p e 0= Y oV, cos - xsin PR (30
a ) o u )

mn =1 mont =1

Following Reddy and Phan (1985), let us substitute (25), in conjunction with (19),
(20) and (24), and using (29) and (30) for cross-ply, or (29) and (31) for angle-ply laminates.
into (23) leads to the following five homogencous equations for cach sct of numbers mr and
n.

[K‘LJ‘P(mnl _ G:;rm)]A‘ = () (l,j — |. e, 5) (3'_))

where (Ay, ... A¢) = (Unns Vs Wons Xows Yor). The coeflicients K7 are mode-depen-
dent linear combinations of the instantaneous stiffnesses of the inelastic plate and can be
identified with the combinations of elastic stiffnesses denoted by C,; in the Appendix of
Reddy and Phan (1985). To this end, the elastic stiffnesses (A4, B,,, Dy, .. .) there should be
replaced by the corresponding instantaneous stiffnesses (4,7, B/”, D}f,...). For example,
the expression for K{7" would therefore be given by (mmn/a)?A}t + (nn/b)*Agf. The
nonzero element of G{J™ is given by

GY" = N (mnja)* + N,(nn/b)*.

In order to obtain a nontrivial solution to (32), singularity of the 5 x 5 matrix of coeflicients
must be required. This leads to the following buckling condition

dct (K VP {mn) )

det FFFmy (33)

N (mn/a)? + N, (nx[b)? =

where K*7" is a § x 5 matrix formed by the coefficients K},7"", and ¥"*'"™ is a 4 x4
matrix obtained from K" by deleting the row i = 3 and the column j = 3. From (33),
one can see that the bifurcation buckling of the plate occurs when the combination of
axial loads N (mn/a)?+ N, (nn/b)* for any mode is equal to the above expression of the
instantaneous stiffnesses of the laminate (given by the right-hand side of the equation). In the
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process of the determination of plastic buckling. the loads have to be applied progressively in
an incremental manner. At each load increment the buckling condition, eqn (33), has to be
checked to verify whether it is satisfied. In the case of a perfectly elastic composite plate,
where the instantaneous properties are constants, eqn (33) readily provides the buckling
load in terms of the laminated plate elastic properties (Reddy and Phan, 1985).

An important observation concerning the plastic buckling of inelastic plates is in order.
Although the inelastic plate is initially anisotropic, additional anisotropy is developed due
to the plastic flow of the inelastic phases (e.g.. the metallic matrix). This follows from the
fact that the instantaneous effective stiffnesses of the plate, which describe its anisotropy,
vary with loading history. This implies that if buckling of the inelastic plate takes place in
accordance with (33) at a certain mode (mn), the corresponding elastic buckling of the same
plate (obtained by disregarding the plasticity effects) might occur at a different mode. Thus,
the incluston of plasticity effects of the constituents in the buckling analysis might change
the load level and mode of buckling.

3.2. Classical plate theory
The following displacement rate field, associated with the classical laminated plate
theory (CPT), is assumed :

4, = u(x, y)—z 0w/ox
ty = b(x, p)~z ow/dy
w(x, v). (4)

u,
In the framework of this theory, we will consider the following two types of uniformly,
biaxially compressed laminated plates:

(a) anti-symmectrical angle-ply plate;
(b) orthotropic plate (unidirectional single-layer or symmetric cross-ply laminate).

In the first case of an angle-ply laminate, the bifurcation buckling of the plate is governed
by the following set of equilibrium equations:

Litu =0 (i,j=123). (35)

In the above equation, the differential operators L}” are obtained from the well known
classical theory of laminated plates. The plate is initially at rest and the following boundary
conditions ar¢ chosen:
W(x,0) = w(x,h) = (0, y) =i(a, y) =0,
i(x,0) = 6(x,b) = u(0, y) = u(a, y) =0,
M,(x,0) = M,(x.b) = M.(0.y) = M.(a,y) =0,

Ny (x,0) = Noy(x,5) = Ny (0, ) = Ny (a, y) = 0. (36)
The solution is
x mn nn
u= U,,,,, sin ~— ==Y,
MZ; l n —x cos 57
= mn nn
V= an C _— in— ]
Mz-l 05 —=xsin —~ y
W= Y W,,sin . sin n—ny. (37
mn=1 a b
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Substituting (37), in conjunction with (22). into (35). and requiring singularity of the matrix
of coefficients of the resulting equations. we obtain the following buckling condition for the
considered angle-ply laminate (Whitney, 1987) :

Nmnia)'+ N (nn/b)* = D{¥m* +2(D{E 42D Yym*n* (a/b)* + D En*(a b)*

) tP(mn) I:’Plnml
—m[BYtm* + 3B n(a/b)? ]J”"”'"’ n(a/B)3BEm* + B En (a'b)” ]J;‘-,q;;; (38)
1
where
S = (AT 4+ Agbnt (@l b)) (Abem® + AVt (a/ b)) — mPni(a/b) (AL + ALE)*
SR = (AT + A0 (a/ b)) (BYEmP +3B5En (a/b)?)
=3mn* (@ b)Y (AVE + ALY BYEm® + B n P (a b))

JPT = (Aefm? + An7(a/b)Y3BEmT + B i (ai b))
—mn(al ) (A + AL ABYEm? + 3B n (a/ b))
In the case of a symmetrically laminated (all B,, = 0), orthotropic plate (D,, =
D, = 0) thatis simply supported, (35) is simplificd to the following single equation :
DT OO 2DV 42000 i lax?t ayt 4+ DAY oty
=N WA +2IN, O dr+ N, /e (39)

For biaxial load, the buckling condition becomces

N (mrja)*+ N (nn/b)? = D\Tm* +2(DVY 42D 0w (af b) + DYt () b)*. (40)

o

Having obtained a buckling condition of a metal matrix laminated plate [e.g. eqn (35),
eqn (38), or cgn (40)] in terms of the instantancous properties of the inclastic plate, we can
proceed and determine the bifurcation buckling load level according to the following
incremental procedure.

(a) Ata given load level the stress resultants and the strain-rate field are known.

(b) These quantitics determine the stresses and strain-rates of the single lamina.

(¢) The determined ficlds of the lamina are used, in conjunction with the micro-
mechanical analysis, to obtain the instantancous effective stiffnesses C)” of the unidi-
rectional ply [eqn (12)].

(d) The instantancous plate stiffnesses [defined by egn (24)] can be readily determined
from the computed C*%/” of the laminac.

(¢) The use of the instantaneous plate stiffnesses in a buckling condition determines
whether buckling of the plate occurs at the present load level. If the buckling condition is
not satisfied with the current plate stiffnesses, the load is modified and the above procedure

is repeated.

The present method of the determination of plastic bifurcation buckling can be applied
for various types of inclastic laminated plates, subjected to various boundary conditions.
If an analytical, exact solution to thc governing equations is not possible, approximatc
methods (e.g., numerical) can be employed in conjunction with the proposed mcthodology.

4. APPLICATIONS

The proposed method of bifurcation buckling analysis of metal matrix laminated plates
is illustrated for the prediction of the critical load of a boron/aluminum composite system.
The boron fibers are assumed to behave as a perfectly elastic material, whereas the aluminum
matrix is represented as an elastic—viscoplastic work-hardening material. The aluminum
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alloy 2024-T4 is an almost rate-insensitive material at room temperature, but its rate
sensitivity significantly increases at elevated temperatures. In this paper, the inelastic
response of the matrix material is described by Bodner and Partom’s (1975) unified visco-
plasticity theory. This theory does not assume the existence of a yield condition, which
eliminates the need to specify loading or unloading criteria, and the same equations can be
directly used in all stages of loading and unloading. According to these equations plastic
deformation always exists, but it is negligibly small when the material behavior should be
essentially elastic.
The flow rule function A in eqn (3) is given, according to this theory. as follows:

A = Dyexp (=A[Z*(3I N (41)

where /i = {(n+1)/n and J, = 5,5, is the second invariant of the stress deviator; D,y and
n are inelastic material parameters, and Z is a state variable that represents the hardened
state of the material with respect to resistance to plastic flow. In the case of isotropic
hardening, the evolution law of this variable is given by

Z=m(Z,-Z)W,|Z, (42)

where Z,. Z, and m are additional inclastic parameters of the material. Note that the plastic
work W, whose rate is H'p = 0,97, is taken as the measure of hardening. The physical
significance of the above inclastic constants s as follows. The paramcter Dy is the limiting
strain rate, Z, is related to the “yield stress™ of a uniaxial stress-strain curve, and Z,
is proportional to the ultimate stress. The material constant m determines the rate of
work hardening, and the rate sensitivity is controlled by the temperature-dependent par-
ameter n.

In Table 1, the material parameters of the 2024-T4 aluminum alloy at various tem-
peratures are given in the framework of Bodner Partom theory. The table presents the
clustic moduli, £ and v, Young’s modulus and Poisson’s ratio, respectively, and five inelastic
parameters, namely: Dy, Zy, Z,. m and n. [t should be noted that higher temperatures are
associated with lower values of n, which results in an increase of the material rate sensitivity.
In Fig. 1, the stress-strain response of the material is given for various values of temperature.

The boron fibers are considered to be perfectly elastic and isotropic with a Young's
modulus of 400 GPa and Poisson’s ratio of 0.3.

The present approach is applied to investigate square (¢ = b) laminated cross-ply and
angle-ply plates. In all cases the thickness of each ply is | mm. The effects of the following
parameters on the buckling of the plate will be considered : length-to-thickness ratio (a/h),
fiber volume ratio (v,), applied strain-rate (4.,). angle of lamination (), number of plies
(k) and temperature (T). Some of these effects arc examined in the framework of CPT and
HSDT.

The inclastic buckling of the composite plates is analyzed by the application of a
uniaxial compressive stress loading 6, while controlling the strain-rate value 4,,. For
convenience the stresses and strain-rates are shown in the figures as positive.

Table 1. Material constants of an aluminum alloy (2024-T4)

Temperature E D, Za Z,
(C) (GPa) v s (MPa) (MPa) m n
20.0 2.4 0.33 10,000 340 435 300 100
148.9 69.3 0.33 10,000 340 435 300 7.0
204.4 65.7 0.33 10,000 340 435 300 4.0
260.0 58.4 0.33 10.600 340 435 300 1.6
3711 41.5 0.33 10,000 340 435 300 0.6

In the elastic region : isotropic material with Young's modulus £ and Poisson’s ratio v;
in the plastic region : isotropic work hardening material.
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Fig. 1. Stress-strain curves in simple tension at several temperatures of an aluminum alloy (2024-

T4 as characterized in Table 1. with an applied strain rate of 0.01 57"

Let us consider a square symmetric cross-ply, [0,90],. laminated plate under simply
supported boundary conditions. Within CPT, the buckling condition of this laminate is
given by (40). In Fig. 2. the critical stress load. 4., for plastic buckling of the present metal
matrix laminated plate at a temperature of 204.4 'C is shown against the length-to-thickness
ratio a/h for compressive strain-rates i, = 10" >s 'and 4, = 10" ®s~". It is clearly seen
that the effect of the material rate sensitivity on plastic buckling of the plate is weak in the
present case. Also shown in the figure is the graph of the buckling load of the plate when
it is assumed to be perfectly clastic (i.e., when the inclastic effects of the aluminum matrix
are disregarded). This reveals that the plastic effects of the metal matrix deerease the ability
of the plate to sustain loading without buckling. The decrease of the buckling load with
increase of a/f should be noted. Furthermore, for a sufliciently thin plate the plastic buckling
level approaches the corresponding clastic one. This result is expected since a thin plate
buckles at relatively low load levels before appreciable plastic effects develop.

Consider next an anti-symmetrically laminated, angle-ply plate subjected to boundary
conditions (26), (28), and (36) which correspond to HSDT and CPT, respectively, The
corresponding buckling conditions are determined by using eqns (33) and (38). In Fig. 3.
a comparison between the buckling loads predicted by CPT and HSDT of a two-layered
[+ 30} angle-ply square laminated plate at 204.4°C is shown for an applied strain rate of
10 ~*/s. The figure also includes the corresponding buckling loads of a perfectly elastic plate.
[t is readily scen that in the present situation the buckling loads obtained by employing
CPT and HSDT are close in both cases of inclastic and perfectly elastic plates. For smaller
values of ¢/ it is expected that the buckling foads of the plate obtained by the two theories
would be appreciable. For example, assuming a/f = 5, the buckling load obtained via CPT
is about 1.3 times the corresponding buckling load level obtained from HSDT when the

1400
( foveo*], T-2044c
1200 | v 50% CPT
0107
1000 -
B s10%
800 F—
Or(MPa)
600 Perfectly
Viscoplastic elastic
400 - matrix matrix
200
1 1 1 1 1
10 20 30 40 50 60
a’h

Fig. 2. Buckling load against length-to-thickness ratio of a cross-ply laminate.
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Fig. 3. Buckling load against length-to-thickness ratio of an angle-ply laminate.

plate is assumed to be perfectly elastic. It is not possible, on the other hand, to predict
plastic buckling of the plate for such a low value of a/A in the framework of small strain
theory considered in the present investigation. The figure demonstrates again the importance
of inclusion of the plastic effects, except for thin plates where buckling of the plate already
occurs in the elastic region.

In order to study the cffect of temperature on the plastic buckling of laminated plates,
let us consider squarc angle-ply laminates at 7= 20"C and 7 = 204.4°C. In Fig. 4a, the
plastic buckling loads of several types of two-layered angle-ply square laminates are shown
at these temperatures. These buckling toads, normalized with respect to the corresponding
clastic buckling load (i.c., when the metal matrix is assumed to behave as an elastic material),
are shown in Fig. 4b. It is readily seen that at the elevated temperature, the ability of the
plate to support loading is reduced. The amount of this reduction depends on the value of
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Fig. 4. (a) Critical load against angle of lamination of an angle-ply laminate. (b) Critical load,
normalized with respect to the corresponding elastic buckling stress, against angle of lamination of
an angle-ply laminate.
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Fig. 5. Buckling load against angle of lamination of an angle-ply laminate, for different values of
applied strain-rate.

the lamination angle #. Furthermore, the effect of taking into account the plastic behavior
of the metal matrix on the buckling foad of the plate depends on € as well. The normalized
buckling load. however, appears to be slightly dependent on the temperature. The impli-
cation is that the temperature reduces the elastic and plastic buckling loads, in the present
cases. by almost the same proportion.

Let us consider the clastic and plastic buckling of an anti-symmetric two-layered [ 0]
laminated plate predicted by using HSDT. Figure 5 exhibits the variation of the resulting
critical loads against . By a comparison with the perfectly clastic case, the figure shows
that plasticity significantly decreases the buckling loads. Due to the rate sensitivity of the
aluminum matrix at 204.4 C, this decrease depends on the applied strain-rate. For a slowly
loaded inclastic plate, the buckling point is lower than that obtained by applying o higher
strain-rate. For small lamination angles 0, however, the buckling of the plate is approxi-
mately clastic and theretore it is not aflected by the rate of the applied loading. Once can
note that whereas the clastic buckling exhibits, in the present fiber/matrix system, a sym-
metry with respect to 0 = 457, this symmetry is completely lost in the inelastic case. It is
interesting to record the total strains of the angle-ply plates at the instant of buckling. In
Table 2 the buckling stresses and strains, predicted by employing HSDT, of the inelastic
plates [+£0] are given for two values of applied strain rates: f,, = 10 s "and 10 s .
It is readily seen that appreciable strains develop before buckling takes place tor angle-ply
plates with lamination angle @ at the vicinity of 50, It should be noted that the buckling
strains are significantly higher for the low loading rate of angle-ply plates with lamination
angles in this region. This result is expected, since loading of an inclastic plate at a low
strain-rate up to buckling is associated with appreciable plastic flow of the viscoplastic
metal matrix.

Tuble 2. Stresses and strains at the instant of buckling, predicted via HSDT, of | + 8] angle-
ply plates, tor two values of applied strain rates (ah = 35,0, = 03. T = 2044 )

Strain-rate Strain-rate
o= 10 S5 ! o= 10 °s !
t Buckling stress Buckling strain Buckling stress Buckling strain
(dey) (MPa) (%) (MPa) (70)
0 - 3249 -0.19 ~-3249 -0.19
10 -327.5 -0.20 -~ 3275 ~0.20)
20 ~3354 -0.23 —3354 -0.23
0 =321 -0.28 -325.7 -0.29
40 -320.6 ~0.46 - 3187 ()55
43 —-317.8 - (.81 -308.7 —-1.13
S0 - 3014 ~1.10 — 2878 -2.39
60 - 2845 —0.64 ~272.9 —-0.75
70 -262.9 —0.36 —-251.5 -0.38
hiv} - 2341 -0.29 -241.2 -0.28

90 - 2559 -0.28 -239.5 -0.26
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Fig. 6. Critical load. normalized with respect to the corresponding elastic buckling stress, against
fiber volume ratio.

It is possible to study the effect of different values of fiber volume fraction v, on the
plastic buckling of a metal matrix composite plate. To this end, consider a [+ 30] angle-ply
laminated plate with a/h = 40, at a temperature of 204.4°C. In Fig. 6 results for the plastic
buckling of the plate using CPT are shown for three values of v,: 0, 0.3 and 0.5. Here, the
buckling levels are normalized with respect to the corresponding buckling loads of the
perfectly elastic plate. Plastic buckling loads for two different loading rates are shown in
the figure: 10 *s~'and 10~ *s~". The case of v; = 0 corresponds to a homogeneous plate
which buckles at the present value of a/h = 40 in the clastic region. As the reinforcement
volume ratio increases, the buckling of the plate takes place in the plastic region. This is
due to the increasing effect of the fibers, as a result of which the plate can sustain higher
loading. Thesc high load levels lead to yiclding and plastic flow of the metal matrix. Since
for r, = 0 buckling occurs in the clastic region far away from the yield point, the effect of
different load rate levels is absent. For moderate values of vy this effect is pronounced due
to the existence of plastic flow. For higher values of v, the effect of fibers is dominant and
the rate sensitivity of the composite plate is weak.

Let us study the effect of number of plies on the plastic buckling load level of a [+ 0],
angle-ply composite plate. To this end, consider a [+ 30], with k = 1,2, 3. The resulting
plastic buckling loads obtained within CPT and HSDT arc shown in Fig. 7. It is readily
observed that, as in the perfectly elastic case, the plastic buckling increases with increasing
number of plies of the laminated plate. It can be seen that HSDT predicts slightly lower
buckling loads as compared with CPT. The small differences between HSDT and CPT
predictions in the present situation are attributed, as previously mentioned, to the relatively
high value of length-to-thickness ratio of the laminated plate (a/h = 30).

5. CONCLUSIONS

By employing a micromechanical analysis which can provide the instantaneous prop-
erties of metal matrix composites, the plastic buckling of laminated plates is determined. It
is shown that in the determination of the critical loading of the plate, the satisfaction of the

[130], a/he30

500 V=03 LIRS
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Mpa) 300 § é§ cPT

il ]\

102 \ és

! 2 3
k

Fig. 7. Buckling load against number of layers of an angle-ply laminate.
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corresponding buckling condition has to be checked at all stages of loading history. The
method is illustrated for the plastic buckling analysis of boron aluminum composite plates
under various situations. The effect of the elastic-viscoplastic behavior of the aluminum
matrix and its rate sensitivity at elevated temperatures on the plastic buckling of the plates
is presented.
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